Check for updates





Blood 142 (2023) 5802-5803

### The 65th ASH Annual Meeting Abstracts

## **ONLINE PUBLICATION ONLY**

#### 605.MOLECULAR PHARMACOLOGY AND DRUG RESISTANCE: LYMPHOID NEOPLASMS

# Redundancy of Glycogen Synthase Kinase 3 in Lymphoma Cell Viability, Proliferation, and the Cytotoxicity of Elraglusib

Josh T Coats, BSc, FRCPath, MRCP<sup>1</sup>, Sudhir Tauro, MBBS PhDMRCP FRCPath<sup>2</sup>, Calum Sutherland, PhD<sup>3</sup>

<sup>1</sup>Cellular and Systems Medicine, University of Dundee, Perth, United Kingdom

<sup>2</sup>Molecular and Clinical Medicine, University of Dundee, Dundee, United Kingdom

<sup>3</sup>Cellular and Systems Medicine, University of Dundee, Dundee, United Kingdom

#### Introduction

Glycogen synthase kinase 3 (GSK3), a ubiquitously expressed serine/threonine kinase, is considered a therapeutic target in non-Hodgkin lymphomas (NHL) due to the poorer survival of patients with higher tumor expression, and the previously observed lethality of GSK3 'knock-out' lymphoma cell lines. Elraglusib (formerly 9-ING-41), a small molecule reported to inhibit the GSK3 $\beta$  paralog, reduces proliferation and induces apoptosis in NHL cell lines, and is undergoing early-phase clinical trials (Wu et al, *Blood* 2019). However, in recent cell culture studies, the anti-lymphoma effects of elraglusib could not be phenocopied by structurally unrelated, small-molecule GSK3 inhibitors, raising questions about the importance of GSK3dependent pathways in lymphoma biology and treatment (Coats et al, *Cell Commun. Signal* 2023). To further validate the lack of impact of GSK3 reduction on lymphoma viability and improve our understanding of the pharmacological properties of elraglusib, we have investigated the effects of reducing GSK3 $\alpha$ , GSK3 $\beta$ , or both paralogs concomitantly in lymphoma cells, using paralog-specific and dual *GSK3A/B* genetic ablation techniques. Additionally, we performed cell-free kinase assays to explore the relative sensitivity of GSK3 $\alpha$  and GSK3 $\beta$  as targets of elraglusib.

#### Methods

In the lymphoma cell line Karpas-299 (K299), single paralog GSK3A and GSK3B knockdowns (KD) were generated using commercial lentiviral shRNA transfection with subsequent puromycin-selection. Dual paralog KD (both GSK3A and GSK3B)were generated by transfecting stable GSK3A KD cells with a second commercial GSK3B lentiviral shRNA and subsequent neomycin-selection. KD efficiency was quantified by total-GSK3 immunoblot and apoptosis by poly (ADP-ribose) polymerase (PARP) cleavage immunoblot. Cell viability and proliferation were assessed by MTS assay following 72-hour incubations in complete media (RPMI 1640, 10% FBS, 100units/ml penicillin/100 $\mu$ g/ml streptomycin). Paralog-specific cell-free kinase assays were performed using <sup>32</sup>P- $\gamma$ -ATP, phospho-glycogen synthase-peptide-2 substrate and purified recombinant GSK3 $\alpha$ and GSK3 $\beta$ .

#### Results

Viable and stable K299 single-paralog (GSK3A or GSK3B) and dual-paralog (GSK3A and GSK3B) KD cell lines were obtained. KD efficiency was quantified by immunoblot and compared to the parental cell line control for  $GSK3\alpha$  ( $\approx$ 30% of control),  $GSK3\beta$  ( $\approx$ 20% of control) and dual  $GSK3\alpha$  and  $GSK3\beta$  KD ( $\approx$ 35% control and  $\approx$ 15% control respectively). All KD cell lines proliferated similarly to parental cell line cells by MTS assay (control vs GSK3B KD normalized to control, mean difference - 5.1% (95% CI -11.7 to +1.37 p=0.14), control vs GSK3A/B KD +3.67% (95% CI -2.87 to +10.2 p=0.348)). Elraglusib 5 $\mu$ M induced apoptosis with a significant increase in cleaved/intact PARP (2.35x, p<0.0001) and reduced cell viability in K299 parental cell line and dual GSK3A/B KD cells (IC <sub>50</sub> 0.158 $\mu$ M parental control vs 0.124 $\mu$ M dual GSK3A/B KD). The equivalence of paralog inhibition (GSK3 $\beta$  IC <sub>50</sub> 0.494 $\mu$ M and GSK3 $\alpha$  IC <sub>50</sub> 0.446 $\mu$ M) was confirmed in cell-free <sup>32</sup>P- $\gamma$ -ATP kinase assays.

#### Conclusion

K299 cells do not depend upon high levels of GSK3 for survival or proliferation. This data extends previous findings regarding the redundancy of GSK3-dependent signalling in lymphoma biology and further suggests that limited therapeutic benefit may be derived from drugs specifically targeting the activity or expression of this protein kinase. The IC <sub>50</sub> of elraglusib remains similar despite a significant reduction in levels of GSK3, again suggesting that GSK3 is not its cytotoxic target. Importantly, elraglusib retains therapeutic potential in lymphoma however GSK3 is not a surrogate marker for its efficacy and additional studies are required to elucidate the mechanisms through which it mediates its cytotoxic effects.

#### ONLINE PUBLICATION ONLY

**Disclosures** No relevant conflicts of interest to declare.



Figure 1

https://doi.org/10.1182/blood-2023-173124